Exercise 5

Verify that $\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \alpha_{j k}=0$ if $\alpha_{j k}=\alpha_{k j}$.

Solution

$\varepsilon_{i j k}$ is the permutation symbol, which is defined as

$$
\varepsilon_{i j k}=\left\{\begin{array}{ll}
1 & \text { if } i j k=123,231, \text { or } 312 \\
-1 & \text { if } i j k=321,132, \text { or } 213 \\
0 & \text { if any indices are the same }
\end{array} .\right.
$$

Evaluating the double sum, we have

$$
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \alpha_{j k}=\sum_{j=1}^{3}\left(\varepsilon_{i j 1} \alpha_{j 1}+\varepsilon_{i j 2} \alpha_{j 2}+\varepsilon_{i j 3} \alpha_{j 3}\right)=\sum_{j=1}^{3} \varepsilon_{i j 1} \alpha_{j 1}+\sum_{j=1}^{3} \varepsilon_{i j 2} \alpha_{j 2}+\sum_{j=1}^{3} \varepsilon_{i j 3} \alpha_{j 3}
$$

Expand each of the sums. The permutation symbol is 0 when two of its indices are the same.

$$
\begin{aligned}
= & \underbrace{\varepsilon_{i 11} \alpha_{11}}_{=0}+\varepsilon_{i 21} \alpha_{21}+\varepsilon_{i 31} \alpha_{31} \\
& +\varepsilon_{i 12} \alpha_{12}+\underbrace{\varepsilon_{i 22} \alpha_{22}}_{=0}+\varepsilon_{i 32} \alpha_{32} \\
& +\varepsilon_{i 13} \alpha_{13}+\varepsilon_{i 23} \alpha_{23}+\underbrace{\varepsilon_{i 33} \alpha_{33}}_{=0}
\end{aligned}
$$

Switch the indices of ε like so. Doing this results in a minus sign.

$$
\begin{aligned}
= & \underbrace{\varepsilon_{i 11} \alpha_{11}}_{=0}-\varepsilon_{i 12} \alpha_{21}-\varepsilon_{i 13} \alpha_{31} \\
& +\varepsilon_{i 12} \alpha_{12}+\underbrace{\varepsilon_{i 22} \alpha_{22}}_{=0}-\varepsilon_{i 23} \alpha_{32} \\
& +\varepsilon_{i 13} \alpha_{13}+\varepsilon_{i 23} \alpha_{23}+\underbrace{\varepsilon_{i 33} \alpha_{33}}_{=0}
\end{aligned}
$$

Use the fact that $\alpha_{j k}=\alpha_{k j}$ to switch the indices of α. Consequently, every term cancels.

$$
\begin{aligned}
= & \underbrace{\varepsilon_{i 11} \alpha_{11}}_{=0}-\frac{\varepsilon_{i 12} \alpha_{12}-\varepsilon_{i 13} \alpha_{13}}{} \\
& +\varepsilon_{i 12} \alpha_{12}+\underbrace{\varepsilon_{i 22} \alpha_{22}}_{=0}-\underbrace{\varepsilon_{i 23} \alpha_{23}}_{=0} \\
& +\varepsilon_{i 13} \alpha_{13}+\alpha_{33} \\
= & 0
\end{aligned}
$$

Therefore, if $\alpha_{j k}=\alpha_{k j}$, then

$$
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \alpha_{j k}=0
$$

